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Summary.

This study estimates the overall effect of two influenza vaccination programs consecutively
administered in a cluster-randomized trial in western Senegal over the course of two influenza
seasons from 2009-2011. We apply cutting-edge methodology combining social contact data
with infection data to reduce bias in estimation arising from contamination between clusters.

Our time-varying estimates reveal a reduction in seasonal influenza from the intervention and a
nonsignificant increase in HIN1 pandemic influenza. We estimate an additive change in overall
cumulative incidence (which was 6.13% in the control arm) of —0.68 percentage points during
Year 1 of the study (95% CI: —2.53, 1.18). When H1N1 pandemic infections were excluded

from analysis, the estimated change was —1.45 percentage points and was significant (95% ClI,
-2.81, -0.08). Because cross-cluster contamination was low (0-3% of contacts for most villages),
an estimator assuming no contamination was only slightly attenuated (—0.65 percentage points).
These findings are encouraging for studies carefully designed to minimize spillover. Further work
is needed to estimate contamination — and its effect on estimation — in a variety of settings.
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Background

Influenza is a seasonal respiratory infection that causes a substantial global burden of
morbidity and mortality, particularly among children. One meta-analysis estimated that in
2018 the global burden of influenza among children under 5 was 109.5 million influenza
episodes, 870,000 hospital admissions for influenza virus-associated acute lower respiratory
infection, and between 13,200 and 97,200 deaths (Wang et al., 2020). In this paper, we use
novel methodology to estimate the overall effect of annual influenza vaccination of children
age 6 months to 10 years —relative to polio vaccination—on the incidence of influenza in
western Senegal.

The study that produced the data analyzed in this paper was a cluster-randomized trial of
20 villages in the Niakhar Demographic Surveillance System (DSS) zone. Villages were
assigned to vaccination of children with either inactivated trivalent influenza vaccine or
an inactivated polio vaccine as an active control. There is no national recommendation
for routine influenza vaccination in Senegal, hence off-study vaccination was expected to
be minimal. The trivalent influenza vaccine has been shown to be efficacious in reducing
influenza infection in children in other settings (Madhi et al., 2014; Zimmerman et al.,
2016); the Niakhar study was testing the effectiveness of widespread immunization of
children to reduce the community burden of influenza. The primary analysis for this trial
analyzed the fotal effect of the intervention (Diallo et al., 2019). The fotal effect is based
on comparing outcomes of treated people in treated villages to those of untreated people
in control villages and accounts for protection conferred by receipt of the vaccine as well
as from reduction in exposure resulting from vaccination of others in the community. In
this paper, we consider the overall effect of the intervention. The overall effectis based
on comparing the average outcome in treated villages to the average outcome in control
villages, so takes into account the effect of the community intervention on both treated
and untreated people (Halloran et al., 1991). In the primary analysis for this trial, the
“total effect” analyzed only children in the age group that was vaccinated, since the total
effect combines individual-level direct and indirect effects of vaccination. In this paper, the
overall effect is estimated by analyzing all participants. The overall effect quantifies the
effectiveness on the entire community (including all age groups) of the TIV vaccination
campaign among children.

The total and overall effects are of interest scientifically because of the presence of
interference in infectious disease processes. Interference —when one person’s treatment
can affect another’s outcome—is both a boon to disease prevention and a classic inferential
problem in infectious disease research. The benefit: the very nature of the process induces
dependence between people’s outcomes, and treating one person may prevent another’s
infection. The drawback: observations are no longer independent, and most mainstream
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causal inference tools cannot account for the induced dependence. The main approach

to dealing with interference is to use cluster-randomized trials (CRT), which allow for
dependence within cluster. The assumption of no interference that would be made in a
traditional individually-randomized controlled trial is thus weakened to partial interference
—an assumption of no interference between clusters (Sobel, 2006). Violation of the partial
interference condition is referred to as contamination (Hudgens and Halloran, 2008).

Typical methods for estimating the overall effect assume partial interference (e.g., Halloran
and Struchiner (1991); Liu and Hudgens (2014)). However, for socially contagious outcomes
such as infectious diseases, partial interference will not be satisfied if members of treated
clusters come in contact with people from untreated clusters (and vice-versa). Recent
methodological developments have explored incorporation of measured contamination data
into estimation and testing methods to explicitly adjust for interference. See Halloran

and Hudgens (2016) and Sévje et al. (2020) for reviews of recent efforts to develop

causal inference methods that account for partial interference as well as more general

forms of interference. Some of these methods incorporate detailed social network structure
(Eckles et al., 2016; Toulis and Kao, 2013; Aronow et al., 2017; Ugander et al., 2013),

but such detailed network data is not always available or easy to obtain. In this study,

the complete social network was not observed, but information was collected on rates

of contacts within and between villages. Most relevant to this data structure and to our
interest in the overall effect is a method developed by Carnegie et al. (2016). It is well
known that when contamination is present, the overall effect estimate is attenuated. The
authors developed a method to explicitly incorporate measured contamination data into the
estimation procedure and demonstrated that this adjustment removes the attenuation of the
overall effect estimate. We apply this method to estimate the overall effect accounting for
cross-cluster contamination and compare it to the estimate that would be obtained assuming
partial interference. The analysis in this paper is post hoc and is the first to estimate

the overall effect for this study and to incorporate the contact data into estimating the
effectiveness of the intervention. To contextualize our findings, we also perform a simulation
study demonstrating the performance of this method for a range of contamination values.

This paper continues as follows. In Section 2, we describe the data; in Section 3 we describe
the causal model and data preparation. The results of causal effect estimation are given in
Section 4. The simulation study parameterization and results are given in Section 4.1, and
implications and limitations are discussed in Section 5.

2. Data Collection

The data were collected in a cluster-randomized clinical trial conducted in the Niakhar
Demographic Surveillance System (DSS) zone from 2009-2011. Among thirty villages

in the Niakhar DSS zone, twenty were selected as clusters for inclusion in the trial and
randomized in a 1:1 ratio to receive a blinded vaccination campaign of either inactivated
trivalent influenza vaccine (TIV) or inactivated poliovirus vaccine (IPV) as an active control.
From here on, villages that received TIV will be referred to as “treated” and those that
received IPV as “control”. The same villages were followed for two influenza seasons
(2009-2010 and 2010-2011). Different formulations of trivalent influenza vaccine were
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given during the two years; the second formulation included the HIN1 2009 “swine”
pandemic strain of influenza, but the first formulation did not. A map of the twenty villages
analyzed is included in Figure 1. This study, ClinicalTrials.gov NCT00893906, is closed,
and the primary results for the trial have been published separately for Year 1 (Diallo et al.,
2019) and Year 2 (Niang et al., 2020).

Within each treatment group the goal was to vaccinate up to 5,000 children 6 months to

10 years of age in the following approximate numbers per age-group: 1,270 children 6-35
months of age; 2,835 children 36 months to 8 years of age; and 895 children 9-10 years of
age. Vaccinees received age-specific doses. In villages assigned to receive influenza vaccine,
3,906 (78.1% of target number for vaccination) were vaccinated with Dose 1, while 3,843
(76.9% of the target) of those in control villages were vaccinated with IPV. These humbers
comprised 66.6% and 66.2% of age-eligible children, respectively.

The primary outcome of the study was laboratory-confirmed symptomatic influenza
infection. A combination of active and passive surveillance was used for the primary
outcome in the Niakhar DSS zone. In this geographic area, residences are organized in
compounds, clusters of dwellings typically housing an extended family. For the twenty
villages randomized in the study, field workers visited compounds on a weekly basis

to inquire about the occurrence of influenza symptoms. If the person had experienced
influenza-like illness in the past 7 days, then the field worker consented them into the
surveillance study and documented symptoms and epidemiologic data. Influenza-like illness
was defined as follows: (1) among children under 2 years of age, the sudden onset of

fever (>37.5° C axillary) or subjective (parent-reported) feverishness, plus at least 1 other
symptom (cough, sore throat, nasal congestion, rhinorrhea, or difficulty breathing), and

(2) among individuals 2 years and older, the sudden onset of fever (>37.5°C axillary) or
subjective (parent- or participant-reported) feverishness, plus either a cough or sore throat.
Cases of influenza-like illness were reported to the study center, and nasal and throat swab
specimens were collected. In addition, individuals seeking medical care at any of the three
Niakhar DSS health posts at any time throughout the year were assessed by health post
medical staff or a study physician to determine if the person had influenza-like illness. These
individuals were consented into the surveillance study, their symptoms were documented,
and nasal and throat swab specimens were obtained for influenza testing.

When individuals with influenza-like illness enrolled into the surveillance study, they also
responded to a survey about their travel and social contact patterns during the prior three
days. The contact survey defined a “contact” as a conversation occurring between two
people in the same location. The contact survey collected numbers of contacts in various
locations at two time points (AM and PM) for three consecutive days: the survey day and
the two prior days. Numbers of contacts recorded on the survey day are subject to truncation
bias because most surveys were administered in the morning and exclude contacts occurring
after the time of the survey. Contact patterns for asymptomatic participants are included

in the data since some participant’s symptoms began on the day of or the day before the
survey. For each day, the respondent provided the number of people she contacted in her
own compound in the morning and the afternoon/evening. In addition, she indicated yes or
no to whether she had visited a list of locations: another compound (up to five could be
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identified in the survey), a market, mosque or church, field, school, sports field or public
place, outside the study zone, or another location. For each location visited, the village
identification code (and compound identification number, where applicable), the time of day
visited (AM, PM, or both), and the number of persons the respondent spoke with during

the visit were recorded. For additional details, refer to the example survey form in the
Supplementary Material.

Village of residence was recorded during quarterly censuses conducted by the Niakhar DSS
(Delaunay et al., 2002, 2013). If participants moved during the trial, their departure date,
arrival date, and village of their new residence were recorded. Those who moved a second
time had their departure date (but not residence after second move) recorded as well. The
cleaning that was performed after receiving the residence data from the DSS is described in
the Supplementary Material.

3. Analytic Methods

3.1. Causal effect estimation

In this paper, we consider two estimators for the overall effect of influenza vaccination
relative to polio vaccination. The first estimator assumes partial interference (i.e., no
contamination), and we refer to it as the no-contamination estimator. The second explicitly
accounts for interference generated by contacts to villages of the opposite treatment
assignment; we refer to this as the contamination-adjusted estimator.

To account for contamination, we use the method developed in Carnegie et al. (2016).

This approach uses an additive hazards model (Aalen, 1989) for the time to first event but
includes a modified treatment variable to account for contacts occurring between clusters
in a cluster-randomized trial. Typically, the treatment variable Zis a binary indicator such
that Z= 1 for participants from treated villages and Z= 0 for those from control villages.
This is the treatment variable used to calculate the no-contamination estimator. To account
for interference between clusters, we use an alternate treatment variable M, which is the
proportion of contacts of residents of the participant’s village that are with treated villages.
It can be thought of as a village-level intensity of exposure to the treatment conditions, and
will range from 0 (if all contacts reported in a village are with control villages) to 1 (if all of
the contacts reported in a village are with treated villages). Note that if no contamination is
present, then this modified treatment variable reduces to the binary treatment variable used
to calculate the no-contamination estimator. The additive hazards model used to obtain the
no-contamination estimator for an individual in cluster jis

4j(t1Z) = Bo(r) + Bz(1)z).
where Zz;is a binary treatment indicator for cluster /. The contamination-adjusted estimator is
obtained from the following model for individual in cluster j:

Aj(t| M) = Po(t) + Prp(1)mj,
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where /m;is the total percentage of contacts of susceptibles in cluster jthat are with treated
clusters. Note that /7;is a cluster-level variable, but the model is an individual-level model,
with individuals in the same cluster taking the same value for /7.

The coefficient of interest in the additive hazards model—corresponding to the treatment
variable—is potentially time-varying. For this reason, we report both that coefficient
(visually) and the difference in cumulative hazard of influenza due to the treatment.
Because the cumulative hazard is low, this is approximately equal to the difference in
cumulative incidence due to treatment. The time-varying coefficients are visualized by

displaying the value of their integrals, /OTﬁZ(t)dz and /OTﬂM(t)dt, as a function of time.

These integrals represent the cumulative hazard difference over the time interval [0,t]

and are estimated using the nonparametric approach proposed by Aalen (1989). Since

the nonparametric estimation approach (based on step functions) produces curves that are
not always differentiable, the additive treatment effect is not explicitly estimated, but it is
visualized as the slope of the curve (Aalen, 1989). Estimation is implemented with the
aalen function in the R package timereg to fit the additive hazards models (Scheike and
Zhang, 2011; R Core Team, 2017), and the R code used is provided in the Supplementary
Material. The effects are displayed together with confidence intervals based on robust
(sandwich) standard errors which take into account the statistical dependency arising from
the clustering; these are also provided by the aalen function.

The estimand of interest, which we will denote 8(3), is the population-averaged difference
in hazard of laboratory-confirmed symptomatic influenza infection associated with a change
from 0% to 100% exposure to treatment. While f (1) is a consistent estimator for A(#) in the

absence of contamination, Carnegie et al. (2016) proved that 3 »(7) is a consistent estimator

for A(9 in the presence of measured contamination. While the actual hazards experienced
by different individuals may differ as an epidemic progresses (due to its stochasticity in
time and space), the estimand of interest is averaged over all individuals and clusters.

As such, this method does not account for interference localized in time and space (e.g.,
the increased risk a household member has when another member is infected). Rather,

it accounts for interference arising from the contact between people in clusters of the
opposite treatment assignments. The common assumption of “partial interference” allows
interference within but not between clusters. This method applies to situations where that
assumption is violated by adjusting for the between-cluster interference; it does not adjust
for within-cluster interference.

This additive hazards model for interference has a natural correspondence to a
compartmental epidemic model such as an SIR model (Susceptible-Infectious-Recovered;
see, e.g., Keeling and Rohani (2008)). This relationship results from the assumption of

the compartmental model that the transmission rate is a product of the contact rate and

the per-contact transmission probability. We provide further details on this relationship

in the Supplementary Material. This correspondence supports application of our method

to influenza, which is frequently modelled with an SIR or SEIR (Susceptible-Exposed-
Infectious-Recovered) model (Coburn et al., 2009). Since the length of the exposure state is
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irrelevant to modelling disease-free survival, this method gives identical results under SIR
and SEIR assumptions (Carnegie et al., 2016).

Although the hazards are permitted to be time-varying, the model assumes identical hazards
for different individuals (with the same attributes) at a given time point. As such, the model
does not take into account the differences in individual hazards due to different numbers of
infections among neighbors at that time point. Survival analysis models applied in influenza
vaccine trials typically make this assumption (Ainslie et al., 2019). We perform a simulation
study, described in Section 4.1, showing that this estimation approach performs well in
estimating the overall effectiveness even when the true process is stochastic.

While Cox regression is frequently used for survival analysis, the Cox proportional hazards
model does not share this natural correspondence to epidemic compartmental models.
Another advantage that the additive hazards model has over the proportional hazards model
is collapsibility, which implies that the treatment effect is the causal effect of interest
whether or not covariates are included in the model. A drawback of the additive instead of
proportional hazards model is that the estimated hazard, or the lower limit of its confidence
interval, is not mathematically restricted to be nonnegative. However, we did not observe
negative hazard estimates or negative lower bounds for the confidence interval in the models
that we fit.

Analyses were performed separately for Year 1 and Year 2 of the study. Inputs to the
additive hazards model are the time to event (or censoring) for each person, infection
status, and the percentage of contacts to treated clusters. Calculation of time-to-event for
each survey year is described in detail in the Supplementary Material. One irregularity in
data collection is noteworthy: during Year 2 of the study, household surveillance was not
performed during a strike of field workers that lasted from Jan 3, 2011 through Feb 18,
2011. This could introduce bias since the rate of reporting infections during household
visits (as opposed to health posts) was higher in treated than control villages (87.5% and
83%, respectively). To prevent such bias, we analyze a shorter time interval for Year 2 by
censoring observations at the start of the strike. The full Year 2 estimates are included as a
secondary analysis.

3.2 Calculation of treatment exposure estimates

The treatment exposure value for village / denoted /17; is the proportion of contacts that
susceptible people in village fmade with people in treated clusters. For control villages, this
variable is the percentage of contacts to treated villages (the contamination estimate itself).
For treated villages, however, the treatment exposure value is one minus the percentage of
contacts to people in control villages (i.e., one minus the contamination estimate).

We analyze a single contact survey per participant and restricted analysis to 3,758 contact
surveys that were submitted between August 1, 2009 to February 1, 2010 because this subset
had been previously cleaned and analyzed extensively (Potter et al., 2019). Contact surveys
were not excluded for those with negative influenza tests. The contact survey was given to a
convenience sample: rather than randomly sampling susceptible people, those who reported
influenza-like-illness during weekly surveillance visits or at the health post were surveyed

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2023 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Potter et al.

Page 8

regarding contact patterns. By estimating proportions of contacts to treated clusters in this
group, we are assuming that the contact patterns reported by these respondents are similar to
those of susceptible people. We analyze only data collected in the morning two days before
the survey date. We chose this reporting day because it this time point includes more reports
from asymptomatic people. A total of 924 (24.6%) were asymptomatic two days before the
survey while only 51 (1.4%) were asymptomatic on the day of the survey. Additionally, a
social network analysis of these data found no difference in numbers of contacts recorded
the day before the survey vs. two days prior — so there is no evidence that the earlier time
point is subject to recall bias (Potter et al., 2019). The survey did not elicit how many of

the morning contacts were repeated in the afternoon/evening. We analyze contacts reported
in the morning as treatment exposure rates were similar between morning and afternoon
contacts (Supplementary Material Table 1). As noted above, the treatment exposure value for
village /is denoted /7, and we will denote our estimator for it by ;. The formulas given

below for m; are expressed in terms of our survey respondents, but also apply to samples that
are taken of susceptible people or are representative of the population of susceptible people.

Our treatment exposure estimates take into account the percentage of contacts reported while
the respondent was visiting treated villages (Section 3.2.1) and the percentage of contacts
reported in the respondent’s own home (compound) that occurred to visitors from treated
villages (Section 3.2.2).

3.2.1. Percentage of contacts in treated villages—For each village, we calculate
the percentage of contacts reported while respondents from that village were located in
treated villages. The denominator is the sum of contacts reported by village residents;

the numerator is the sum of those contacts whose reported location was a treated village.
Contacts reported to villages that are not in the trial are included in the denominator and are
treated the same as contacts to control villages. The numerator includes contacts reported
in the respondent’s own compound if the respondent was a resident of a treated village.

For participants who moved mid-study, the village of residence is the reported village of
residence at the time of the contact survey.

We initially calculated treatment exposure rates using reports by asymptomatic people
only, assuming that this would be more representative of behavior when uninfected and
that the symptomatic people would travel less. We compared these to the estimates based
on reports by symptomatic people and (counterintuitively) found that symptomatic reports
included slightly higher rates of contacts to clusters of the opposite treatment assignment
(Supplementary Material Tables 2 and 3). This is likely because cross-cluster contact rates
are fairly low overall and because less data is available for asymptomatic reports, so the
small amount of data from asymptomatic respondents includes fewer non-zero counts.
Therefore we combined data from both asymptomatic and symptomatic people to estimate
the treatment exposure variable more precisely.

3.2.2. Incorporating treatment exposure from visitors to the respondent’s
compound—The above approach assumes that the location of a contact reported by the
respondent indicates the residence of the person contacted. As such it does not account
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for visitors to one’s compound from a cluster of the opposite treatment assignment, so

may underestimate cross-cluster exposure. To incorporate exposure from visitors into the
estimate, we will define some notation and first consider the estimates for people living

in control clusters. Suppose there are 77;people living in cluster / and let D;denote the
number of contacts reported by person 7/who lives in cluster /. Let 7;denote the number of
contacts person /has made in a location in a treated cluster. Our estimate for the proportion
of contacts in cluster jthat susceptibles made to people from treated clusters is

ni
Z[JZITi

n
Zijlei

mj=

We need to update the numerator to include contacts occurring within the respondent’s own
compound to visitors from other clusters. We can use estimates reported by these visitors,
rather than by respondents in cluster j to obtain this information. Let V/7;denote the total
number of contacts reported by people in any treated cluster during their visits to compounds
in cluster . While these contacts contribute to the denominator in the above estimator,

they do not contribute to the numerator (because they occurred within the respondent’s
assigned cluster), but should. Therefore, when /is a control cluster, our updated estimate
incorporating this exposure is:

Zznj= 1 TitVrj Z?j: 1Ti e

nj nj nj
j . J . J .
i=1Di =10 Xi= D

The rationale for this adjustment is explained in detail in Potter et al. (2019), and an
explanation tailored to this setting is provided in the Supplementary Material.

An analogous update is needed for residents of treated clusters. For these respondents

we need to account for visits from members of control clusters. Letting V¢ ;denote the
total number of contacts reported by people in any control cluster during their visits to
compounds in cluster j. When jis a treated cluster, our updated estimate incorporating this
exposure is:

Z,njz 1 Ti-Ve,j Z?J: I v

nj nj nj
j . J . J X
PIRERRY i1 Xy Di

mj =

3.3. Multiple Imputation for Missing Contact Data

The submitted contact surveys had a large number of missing fields, which, if not modelled
appropriately, could create bias in the estimates of cross-cluster exposure. For locations
visited outside the home two days before the survey, 24% are missing time of day, 59% are
missing the number of people contacted, and 32% do not have a village number recorded.
Missing data was slightly less on the day before the survey (55% missing the number of
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people contacted and 29% missing the village number), but contamination estimates were
similar, generally ranging from 0-3% per village. We used data from two days before due to
the higher number of reports from asymptomatic people at that time point (24.6% vs. 1.4%).
The survey design elicited at-home contacts differently than those that occurred outside the
home: the numbers contacted at home in the morning and in the afternoon/evening were
recorded, so village and time point were not collected as separate variables. Furthermore, in
60% of analyzed surveys, the number contacted at home in the morning was missing.

We used multiple imputation, expanding on the procedure used in another analysis of this
data set (Potter et al., 2019) to adjust for missing contact data. For outside-home locations,
up to four variables may be missing: the response to “Was this location visited?”, the time of
day (AM or PM) the location was visited, the number of people contacted at that location,
and the village where the location is located. The responses to whether the location was
visited were imputed based on a log binomial regression model with location type, symptom
status, and age category as predictors, stratified on day relative to the survey day. Missing
times were imputed by sampling from the distribution of non-missing times for that location
type. To impute missing numbers of contacts for non-home locations, we fit a negative
binomial distribution to the reported contact numbers, predicting the number contacted by
the location, symptom status, time of day, and age category. For at-home contacts, we
predicted number contacted based on symptom status, time of day, day relative to survey
day, age category, and gender. Missing villages for out-of-home contacts were sampled

from the observed distribution of visited villages for the respondent’s village of residence,
combining data from both survey days. As such we are assuming the data are missing at
random; in other words, the predictors in our imputation model are sufficient to explain the
distribution of unobserved values (Rubin, 1976).

We created twenty imputed data sets, calculated percentages of contacts to treated clusters
for each village in each of these imputed data sets, and combined the percentages using
standard rules for combining multiply imputed data (Rubin, 1987).

4. Results

Table 1 displays the treatment exposure estimates for each village enrolled in the trial
based on the multiply imputed data. For each village, we display the percentage of contacts
reported when the respondent visited treated villages, the estimated percentages of contacts
from visitors from villages of the opposite treatment assignment, as well as the overall
percent of contacts to treated villages, which was used as a covariate in the contamination-
adjusted model. The overall percentages are generally close to zero for control villages and
close to 100 for treated villages, with a few exceptions.

Our estimated time-varying treatment effects (both unadjusted and contamination-adjusted)
are displayed in Figure 2, Panel A for Year 1 of the study. Since the graph displays the
integral of the time-varying coefficients, the slopes of the curves represent the coefficients
themselves - the estimated difference in hazard rates between vaccine and control villages
at each point in time. Both models indicate that the influenza vaccination program reduces
influenza through September. Then it is estimated to be ineffective until February (since no
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influenza was circulating), after which the program is associated with an increase in the
hazard of influenza for a month. This latter time period coincides with the appearance of the
A (H1N1) (2009) pandemic strain of influenza (A/H1IN1pdmQ9) in the community, which
first appeared in late January 2010. Panel B of Figure 2 displays numbers of infections

by influenza type and week. Panel C presents the two estimators excluding cases of A/
H1N1pdmO09 influenza from the analysis. Its slope represents the instantaneous effect of the
influenza vaccination program on the hazard of infection for non-pandemic strains only.

Figure 3 presents results for the second year of the study. As mentioned previously, the
formulation of the vaccine provided during this year included the A/H1N1pdm0Q9 strain,
unlike the formulation provided in Year 1. Panel B of the graph shows that substantially
fewer infections were detected this year. We expect reports to be lower during the strike
(Jan. 1 - Feb. 18, 2011) since household surveillance was not conducted during that time,
but frequencies prior to the strike were also much lower than in Year 1. Figure 3 shows that
after a delay of approximately two months with little effect, the two estimators both indicate
that influenza vaccination reduced incidence in Year 2. The delay is likely due to the relative
sparsity of cases in the first weeks of the year. The start of the strike mentioned in Section 3
is shown as a vertical line.

Table 3 displays the estimated difference in cumulative hazard of lab-confirmed
symptomatic influenza infection due to the influenza vaccination program. These are simply
the values of the curves in Figures 2 and 3 for the last day of follow-up, and the confidence
intervals correspond to those in the figures. Because the cumulative hazard is low, the
difference in cumulative hazard is approximately equal to the difference in cumulative
incidence due to treatment.

The overall incidence rates are displayed in Table 2 for comparison purposes. Since the
overall incidence in the control group was 6.13%, our estimated additive effect of —0.68%
indicates the vaccination program prevented about 11% of influenza infections.

Our two estimators and confidence intervals are similar, but the no-contamination estimators
are slightly attenuated because they assume no mixing between clusters of opposite
treatment assignments. The confidence intervals for the contamination-adjusted estimator
are slightly wider, reflecting the loss of information caused by contamination, but again,

are similar. For Year 1 both effects are not statistically significant when all infections are
included but achieve significance (barely) when A/HIN1pdmQ9 infections are excluded.
The Year 2 estimates are statistically significant. The Year 2 estimates are interpreted
differently as they cover different time intervals; a higher difference in cumulative incidence
is expected for the longer interval if vaccine performance stays the same. While bias from
the strike starting Jan 1, 2011 does not impact the Year 2 estimate censored at that date, the
uncensored one could be biased. The rates of reporting infections during health post visits
(as opposed to household visits) were 12.5% in treated villages and 17% in control villages,
so the vaccine effect could be overestimated by including a time interval with only health
post visits. Because the rates are similar, and because the strike lasted 49 days of a 320-day
follow-up period, the bias is likely low.
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4.1. Simulation study

We also perform a simulation study to demonstrate the potential impact of using the
contamination-adjusted estimator in settings with higher rates of contamination across
communities. The simulation study is similar to the one conducted in Carnegie et al. (2016),
with some adaptations to reflect the influenza setting of interest in this paper. We simulate
interacting pairs of clusters with the percentage of contacts of members of the treated
cluster that are with the untreated cluster fixed at values ranging from 5 to 30 percent. Each
simulation has ten pairs of clusters, for a total of 20. Influenza spreads over the network
following a stochastic SEIR model parameterized based on the model described in Chao et
al. (2010), with infected individuals spending an average of 2 days in the exposed phase
and 5 in the infectious phase, and average infectiousness per face-to-face contact calculated
to produce an Ry of 2.4 in an unvaccinated population. Each village in each simulation has
a small random pertubation added to the infectiousness parameter to encourage stochastic
variation across clusters and simulations. Individuals have an average of 16.5 face-to-face
contacts per day because a previous analysis of the network data collected in this study
found a lower bound of 16.5 face-to-face contacts per day for asymptomatic individuals

and 15 for symptomatic individuals (Potter et al., 2019). For simplicity, we assume that all
individuals in treated clusters were vaccinated and that vaccination reduces infectiousness by
50%. Although this set-up is simpler than our trial’s design (which includes both vaccinated
and unvaccinated individuals in treated clusters), and simplifies the vaccination effect (which
typically also impacts susceptibility), it is a straightforward way to induce a reduction in
cumulative incidence and demonstrate the properties of this method.

The outcome measure is the cumulative incidence of influenza after 60 days. The
contamination-adjusted estimator attempts to recover the difference in cumulative incidence
that would be observed between the two arms of the study if there were truly no
contamination across clusters. The “true value” for this estimand is found via simulation,
based on 2000 replications of the epidemic process in a population with two fully distinct
clusters. This gave a reduction in cumulative incidence of 8.3 percentage points in the
treated cluster relative to the control. For simulations with interacting clusters, we perform
250 replications of the epidemic process and compute both the contamination-adjusted
estimator and the no-contamination estimator (which wrongly assumes there was no
contamination between clusters).

The simulation study results in Figure 4 show that the no-contamination estimator is
steadily more attenuated relative to the difference in cumulative incidence as the rate of
contamination increases. The contamination-adjusted estimator, on the other hand, recovers
the true difference in cumulative incidence in the absence of contamination well, though that
estimate becomes increasingly variable as the rate of contamination increases. In Panel B of
the figure, we see that the root mean squared error (RMSE) of the contamination-adjusted
estimator is still consistently lower than observed for the no-contamination estimator,
indicating that the bias reduction outweighs the increased variability when assessing
accuracy of the estimate.
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5. Discussion

We have applied novel statistical methodology to estimate the overall effect of a trivalent
influenza vaccine program in Niakhar, Senegal. This method incorporates social contact data
together with treatment and infection data to reduce the bias in this estimate caused by
interference between clusters. Ours is the first study we know of applying this novel method
to contact and infection data collected jointly in a clinical trial setting. We produce the first
estimates of contact rates between clusters of opposite treatment assignments for this trial
and the first, to our knowledge, in Senegal. Our results provide insight into the extent to
which the standard assumption of partial interference is violated in a trial of this structure
and of the impact of this violation on estimates.

Our time-varying effect estimates show that in Year 1 of the study, the treatment program
—vaccination of children — reduced lab-confirmed symptomatic infection with seasonal
influenza in the community. Our estimates found the treatment program to be associated
with a small (though statistically insignificant) increase in infections with A/HIN1pdm09
influenza. While other studies have found evidence for this relationship (Cowling et

al., 2010; Skowronski et al., 2010), others have found evidence that trivalent influenza
vaccination protects against A/HIN1pdmO09 infection. A meta-analysis of 17 studies,
including the two just mentioned, found that the overall evidence points to a protective
effect, but the authors cautioned against drawing a solid conclusion because most of the
studies reviewed were observational (Yin et al., 2012). Two subsequent randomized trials
also found evidence for a protective effect (Cowling et al., 2012; Mcbride et al., 2016).

The extent of contamination measured in our data resulted in little difference between the
cumulative incidence for the estimator adjusting for contamination and the one assuming
no contamination. The latter was smaller because, as has been found in other studies,
contacts to members of clusters of the opposite assignment attenuate the estimate of the
overall effect from what it would have been with no contamination (Carnegie et al., 2016;
Tiono et al., 2013; Wang et al., 2014). The model we implement explicitly adjusts for
contamination, correcting this under-estimation. In addition, the standard errors associated
with this adjusted estimator were larger than those for the no-contamination estimator
because information available to estimate the effect of the treatment program decreases as
mixing increases — so these intervals accurately reflect the decrease in information from zero
mixing to the small level of mixing we observed. Our simulation study shows a stronger
difference between the two methods when contamination is higher. For example, when

the true difference in cumulative incidence is 8.3 percentage points, if contamination is
15%, the contamination-adjusted estimator removes about four percentage points of bias
caused by assuming no contamination. The impact on bias and variance is illustrated by our
simulation study, which shows the expected attentuation of the effect estimate for values of
contamination ranging from zero to 35%. As noted in Carnegie et al. (2016), the approach
we have used to estimate the overall effect fails when 50% of contacts occur to clusters

of the opposite treatment assignment. This is because our method uses the contact rates
between clusters to differentiate treatment status, so no information distinguishing clusters is
available for our approach when mixing is at 50%.
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The level of contamination in the data was fairly small: the percent of contacts to clusters
of the opposite treatment was between 0% and 3% for most villages, although there were
some outliers, with 14% being the largest observed value. To our knowledge, these are

the first data-based contamination estimates of this type for Senegal. Our finding that this
amount of contamination has a negligible impact on the effect estimate may be encouraging
for researchers who carefully define cluster selection to minimize contamination, as was
done in this study. As contact and travel patterns can vary substantially between cultures
and contexts, our estimates may not generalize to other geographic areas, so further
measurement of contamination is recommended. Figure 1 shows little separation between
the villages in this trial, but they were separated by physical boundaries such as bodies of
water and roads, and their definition as cultural/political entities also has an impact on social
contact behavior.

Our study has several limitations. First, convenience sampling was used in collecting contact
and travel data. Instead of random sampling, participants with ILI were surveyed during
household surveillance visits, and their responses were used to estimate the percentage of
contacts that susceptible individuals made to treated clusters. Information on contact patterns
prior to symptom onset suggest that contact patterns while symptomatic vs. asymptomatic
do not differ substantially. However, in future surveys, random sampling of susceptible
individuals is recommended to ensure a representative sample.

Second, the extent of missing data in the contact survey is substantial. As noted previously,
for locations visited outside the home two days before the survey, 24% are missing time

of day, 59% are missing the number of people contacted, and 32% do not have a village
number recorded. We used multiple imputation to adjust for missing data. Simulations have
shown that multiple imputation can yield unbiased results even when the proportion of
missing data is as high as 90%, as long as the imputation model is correctly specified and
the data are Missing At Random (MAR) (Madley-Dowd et al., 2019). However, bias is

still a risk if these conditions do not hold. For example, if numbers of people contacted

in villages of the opposite assignment were higher for participants who did not respond

to this question than for those who responded (and who have similar values for covariates
included the multiple imputation model), then the true contamination values may be higher
than our predicted values. This would mean that the magnitude of the true overall effect is
larger than our estimate. If, on the other hand, we have overestimated contamination, then
the true effect may be closer to our no-contamination estimate (closer to —0.65 than —-0.68).
Implementation of similar surveys in the future may be improved by a diary-based approach,
in which participants fill out a paper diary as they go about their day (Mossong et al., 2008;
Béraud et al., 2015; Melegaro et al., 2017; Johnstone-Robertson et al., 2011; Horby et al.,
2011; Fuetal., 2012; Read et al., 2014). In addition we would recommend consideration

of procedures employed by Kiti et al. (2014), including conducting a pilot study, providing
wristwatches with pre-programmed alarms to remind participants to fill out their diary, and
by assigning “shadow” respondents to fill out the diary for illiterate participants. Alternately
and potentially more accurate would be an approach using remote wireless sensors to detect
when two participants are located within 1.5 meters of each other - a distance at which
infection may be transmitted (Kiti et al., 2016; Fournet and Barrat, 2014; Barclay et al.,
2014; Génois et al., 2015). While the latter may be prohibitively expensive at the scale of
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this study, it could be employed for studies with smaller sized clusters (e.g. households or
compounds).

A second limitation of the contact survey is that contacts were reported separately for
morning and afternoon time intervals without recording the extent of overlap. Because
morning and afternoon contamination estimates were similar, either is likely a reasonable
approximation to the percent of contacts to clusters of the opposite assignment during a
full day. However, it would be preferable to record numbers of contacts throughout the
entire day in future studies. We also note that contacts recorded on the day of the survey
did not contribute to analysis since truncation bias arose from the fact that most surveys
were conducted in the morning. A diary-based approach would avoid this problem, or if
interviews are conducted, they should focus on days before the survey day. The literacy
level of the population of interest should be considered in choosing the optimal approach to
collect contact data.

Finally, the type of contacts recorded in our study emphasize transmission via large droplets
(in close proximity) rather than by aerosol droplets which have a longer range. While

many studies have investigated the importance of fomite transmission, physical contacts,
small droplets, and aerosol droplets for transmission, their relative importance is not well
understood (Weber and Stilianakis, 2008; Cowling et al., 2013; Teunis et al., 2010; Wei and
Li, 2016; Kutter et al., 2018). Although the contact survey had limitations, it seems unlikely
that the true contamination levels are higher enough than our estimated ones to substantially
impact the efficacy estimates. Therefore we believe that our conclusion that contamination
was low and had only a small impact on efficacy estimates is valid. However, careful design
of the contact survey would improve data precision if a similar approach is applied when
clusters are smaller and closer. We would recommend such studies as future research. For
example, a compound-based randomization scheme had been considered for this trial design
instead of village-based, and in fact, the protocol allowed for both possibilities. The level

of contamination for such a design, which would likely be higher than that for villages,
could be estimated with our social network data in order to understand its potential impact
on estimation. Although our method adjusts for the contamination, higher contamination
decreases the information available to detect an effect. Since our approach removes the
dilution from the effect estimate while simultaneously increasing standard errors, the lost
power from contamination is not regained via our adjustment. Rather, the estimate and
standard error estimates are both more accurate than unadjusted estimates. We expect this
relationship to hold for other adjustment approaches which have been proposed but, to our
knowledge, not yet applied or tested (e.g., Reiner Jr. et al. (2016)).

We also recommend collection and estimation of cross-cluster contamination for different
types of contacts (e.g., physical contacts, sexual contacts), for various definitions of clusters
in various settings. These estimates can be used to inform future trial designs, choose
whether the method we have applied would be better than one which does not adjust for
contamination, and ultimately improve the accuracy of vaccine effectiveness and standard
error estimates.
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Map of the twenty villages included as clusters in the influenza vaccine trial.
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Fig. 2.

Page 21

Panel A shows the estimated effects of the influenza vaccination program for Year 1 (July
2009 - May 2010) of the study. Shading shows 95% confidence intervals. Panel B shows
incidence of influenza infections by time and type. Panel C shows the estimated effects of
the influenza vaccination program during Year 1 on symptomatic infection with seasonal

influenza strains (A/H3N2 or B).
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A. Estimated difference in cumulative hazard of lab-confirmed symptomatic influenza,
2010-2011. Shading shows 95% confidence intervals.
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Fig. 3.

Panel A shows the estimated effects of the influenza vaccination program for Year 2 (July
2010 - May 2011) of the study. Panel B shows incidence of influenza infections by time and

type.
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Fig. 4.

Panel A shows the value of the contamination-adjusted (red solid line) and no-contamination
(blue dashed line) estimators and associated 95% confidence intervals across values of
cross-community contamination. The horizontal line shows the true value of the estimand.
Because of the substantial overlap in confidence intervals, the lines are shifted slightly

for visibility, but contamination rates were at 5% intervals. Panel B shows the root mean
squared error of the estimator (with respect to the true difference in cumulative incidence in
the absence of contamination of —0.083).
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Table 1:

Page 24

Percentages of contacts with residents of treated clusters based on (1) contacts reported while located in
treated clusters, (2) contacts in the respondent’s own compound to visitors from clusters of the opposite
treatment assignment, and (3) total percentages of contacts to residents of treated clusters (treatment

exposure).
Village Treatment Percent reported in treated Percent from visitors Treatment exposure
Assgnment dusersy . Ti/¥. D Ve IS | D; m
Kalome Ndofane Vaccine 100 0 100
Ngayokheme Vaccine 99 0 99
Ndokh Vaccine 99 1 99
Ngangarlame Vaccine 99 0 99
Diohine Vaccine 99 0 98
Mokane Ngouye Vaccine 99 1 98
Nghonine Vaccine 98 2 96
Logdir Vaccine 95 2 93
Darou Vaccine 96 5 90
Poudaye Vaccine 93 2 90
Ngalagne Kop Control 0 0 0
Mboyene Control 0 0 0
Poultok Diohine Control 0 0 0
Bary Ndondol Control 0 1 1
Toucar Control 1 0 1
Gadiak Control 2 0 2
Godel Control 2 0 2
Khassous Control 3 0 3
Kothiok Control 3 0 3
Meme Control 14 0 14
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Table 2:

Incidence of influenza by treatment group and study year.

Study Year Treated Control All

Year 1, all infections 999/18200 (5.49%)  1076/17550 (6.13%)  2075/35750 (5.8%)
Year 1, excluding A/HIN1pdm09  630/18200 (3.46%)  833/17550 (4.75%)  1463/35750 (4.09%)
Year 2, all infections 224/18547 (1.21%)  341/17815 (1.91%) 565/36362 (1.55%)
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Table 3:

Estimated difference in cumulative incidence of influenza (measured in percentage points) due to the influenza
vaccination program.

Contamination-Adjusted No-Contamination
Study Year Estimate 95% C.I. Estimate 95% C.I.
Year 1, all infections -0.68 [-2.53,1.18] -0.65 [-2.40, 1.09]
Year 1, excluding A/HIN1pdmO09 -1.45 [-2.81, -0.08] -1.35 [-2.64, -0.06]
Year 2 (July - Dec 2010) -059  [-1.01,-0.17] -059  [-0.99, -0.19]
Year 2 (July 2010 - May 2011) -073  [-1.16,-0.31] -0.73  [-1.14,-0.32]
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