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Summary.

This study estimates the overall effect of two influenza vaccination programs consecutively 

administered in a cluster-randomized trial in western Senegal over the course of two influenza 

seasons from 2009–2011. We apply cutting-edge methodology combining social contact data 

with infection data to reduce bias in estimation arising from contamination between clusters. 

Our time-varying estimates reveal a reduction in seasonal influenza from the intervention and a 

nonsignificant increase in H1N1 pandemic influenza. We estimate an additive change in overall 

cumulative incidence (which was 6.13% in the control arm) of −0.68 percentage points during 

Year 1 of the study (95% CI: −2.53, 1.18). When H1N1 pandemic infections were excluded 

from analysis, the estimated change was −1.45 percentage points and was significant (95% CI, 

−2.81, −0.08). Because cross-cluster contamination was low (0–3% of contacts for most villages), 

an estimator assuming no contamination was only slightly attenuated (−0.65 percentage points). 

These findings are encouraging for studies carefully designed to minimize spillover. Further work 

is needed to estimate contamination – and its effect on estimation – in a variety of settings.
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1. Background

Influenza is a seasonal respiratory infection that causes a substantial global burden of 

morbidity and mortality, particularly among children. One meta-analysis estimated that in 

2018 the global burden of influenza among children under 5 was 109.5 million influenza 

episodes, 870,000 hospital admissions for influenza virus-associated acute lower respiratory 

infection, and between 13,200 and 97,200 deaths (Wang et al., 2020). In this paper, we use 

novel methodology to estimate the overall effect of annual influenza vaccination of children 

age 6 months to 10 years —relative to polio vaccination—on the incidence of influenza in 

western Senegal.

The study that produced the data analyzed in this paper was a cluster-randomized trial of 

20 villages in the Niakhar Demographic Surveillance System (DSS) zone. Villages were 

assigned to vaccination of children with either inactivated trivalent influenza vaccine or 

an inactivated polio vaccine as an active control. There is no national recommendation 

for routine influenza vaccination in Senegal, hence off-study vaccination was expected to 

be minimal. The trivalent influenza vaccine has been shown to be efficacious in reducing 

influenza infection in children in other settings (Madhi et al., 2014; Zimmerman et al., 

2016); the Niakhar study was testing the effectiveness of widespread immunization of 

children to reduce the community burden of influenza. The primary analysis for this trial 

analyzed the total effect of the intervention (Diallo et al., 2019). The total effect is based 

on comparing outcomes of treated people in treated villages to those of untreated people 

in control villages and accounts for protection conferred by receipt of the vaccine as well 

as from reduction in exposure resulting from vaccination of others in the community. In 

this paper, we consider the overall effect of the intervention. The overall effect is based 

on comparing the average outcome in treated villages to the average outcome in control 

villages, so takes into account the effect of the community intervention on both treated 

and untreated people (Halloran et al., 1991). In the primary analysis for this trial, the 

“total effect” analyzed only children in the age group that was vaccinated, since the total 

effect combines individual-level direct and indirect effects of vaccination. In this paper, the 

overall effect is estimated by analyzing all participants. The overall effect quantifies the 

effectiveness on the entire community (including all age groups) of the TIV vaccination 

campaign among children.

The total and overall effects are of interest scientifically because of the presence of 

interference in infectious disease processes. Interference —when one person’s treatment 

can affect another’s outcome—is both a boon to disease prevention and a classic inferential 

problem in infectious disease research. The benefit: the very nature of the process induces 

dependence between people’s outcomes, and treating one person may prevent another’s 

infection. The drawback: observations are no longer independent, and most mainstream 

Potter et al. Page 2

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



causal inference tools cannot account for the induced dependence. The main approach 

to dealing with interference is to use cluster-randomized trials (CRT), which allow for 

dependence within cluster. The assumption of no interference that would be made in a 

traditional individually-randomized controlled trial is thus weakened to partial interference
—an assumption of no interference between clusters (Sobel, 2006). Violation of the partial 

interference condition is referred to as contamination (Hudgens and Halloran, 2008).

Typical methods for estimating the overall effect assume partial interference (e.g., Halloran 

and Struchiner (1991); Liu and Hudgens (2014)). However, for socially contagious outcomes 

such as infectious diseases, partial interference will not be satisfied if members of treated 

clusters come in contact with people from untreated clusters (and vice-versa). Recent 

methodological developments have explored incorporation of measured contamination data 

into estimation and testing methods to explicitly adjust for interference. See Halloran 

and Hudgens (2016) and Sävje et al. (2020) for reviews of recent efforts to develop 

causal inference methods that account for partial interference as well as more general 

forms of interference. Some of these methods incorporate detailed social network structure 

(Eckles et al., 2016; Toulis and Kao, 2013; Aronow et al., 2017; Ugander et al., 2013), 

but such detailed network data is not always available or easy to obtain. In this study, 

the complete social network was not observed, but information was collected on rates 

of contacts within and between villages. Most relevant to this data structure and to our 

interest in the overall effect is a method developed by Carnegie et al. (2016). It is well 

known that when contamination is present, the overall effect estimate is attenuated. The 

authors developed a method to explicitly incorporate measured contamination data into the 

estimation procedure and demonstrated that this adjustment removes the attenuation of the 

overall effect estimate. We apply this method to estimate the overall effect accounting for 

cross-cluster contamination and compare it to the estimate that would be obtained assuming 

partial interference. The analysis in this paper is post hoc and is the first to estimate 

the overall effect for this study and to incorporate the contact data into estimating the 

effectiveness of the intervention. To contextualize our findings, we also perform a simulation 

study demonstrating the performance of this method for a range of contamination values.

This paper continues as follows. In Section 2, we describe the data; in Section 3 we describe 

the causal model and data preparation. The results of causal effect estimation are given in 

Section 4. The simulation study parameterization and results are given in Section 4.1, and 

implications and limitations are discussed in Section 5.

2. Data Collection

The data were collected in a cluster-randomized clinical trial conducted in the Niakhar 

Demographic Surveillance System (DSS) zone from 2009–2011. Among thirty villages 

in the Niakhar DSS zone, twenty were selected as clusters for inclusion in the trial and 

randomized in a 1:1 ratio to receive a blinded vaccination campaign of either inactivated 

trivalent influenza vaccine (TIV) or inactivated poliovirus vaccine (IPV) as an active control. 

From here on, villages that received TIV will be referred to as “treated” and those that 

received IPV as “control”. The same villages were followed for two influenza seasons 

(2009–2010 and 2010–2011). Different formulations of trivalent influenza vaccine were 
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given during the two years; the second formulation included the H1N1 2009 “swine” 

pandemic strain of influenza, but the first formulation did not. A map of the twenty villages 

analyzed is included in Figure 1. This study, ClinicalTrials.gov NCT00893906, is closed, 

and the primary results for the trial have been published separately for Year 1 (Diallo et al., 

2019) and Year 2 (Niang et al., 2020).

Within each treatment group the goal was to vaccinate up to 5,000 children 6 months to 

10 years of age in the following approximate numbers per age-group: 1,270 children 6–35 

months of age; 2,835 children 36 months to 8 years of age; and 895 children 9–10 years of 

age. Vaccinees received age-specific doses. In villages assigned to receive influenza vaccine, 

3,906 (78.1% of target number for vaccination) were vaccinated with Dose 1, while 3,843 

(76.9% of the target) of those in control villages were vaccinated with IPV. These numbers 

comprised 66.6% and 66.2% of age-eligible children, respectively.

The primary outcome of the study was laboratory-confirmed symptomatic influenza 

infection. A combination of active and passive surveillance was used for the primary 

outcome in the Niakhar DSS zone. In this geographic area, residences are organized in 

compounds, clusters of dwellings typically housing an extended family. For the twenty 

villages randomized in the study, field workers visited compounds on a weekly basis 

to inquire about the occurrence of influenza symptoms. If the person had experienced 

influenza-like illness in the past 7 days, then the field worker consented them into the 

surveillance study and documented symptoms and epidemiologic data. Influenza-like illness 

was defined as follows: (1) among children under 2 years of age, the sudden onset of 

fever (> 37.5◦ C axillary) or subjective (parent-reported) feverishness, plus at least 1 other 

symptom (cough, sore throat, nasal congestion, rhinorrhea, or difficulty breathing), and 

(2) among individuals 2 years and older, the sudden onset of fever (> 37.5◦C axillary) or 

subjective (parent- or participant-reported) feverishness, plus either a cough or sore throat. 

Cases of influenza-like illness were reported to the study center, and nasal and throat swab 

specimens were collected. In addition, individuals seeking medical care at any of the three 

Niakhar DSS health posts at any time throughout the year were assessed by health post 

medical staff or a study physician to determine if the person had influenza-like illness. These 

individuals were consented into the surveillance study, their symptoms were documented, 

and nasal and throat swab specimens were obtained for influenza testing.

When individuals with influenza-like illness enrolled into the surveillance study, they also 

responded to a survey about their travel and social contact patterns during the prior three 

days. The contact survey defined a “contact” as a conversation occurring between two 

people in the same location. The contact survey collected numbers of contacts in various 

locations at two time points (AM and PM) for three consecutive days: the survey day and 

the two prior days. Numbers of contacts recorded on the survey day are subject to truncation 

bias because most surveys were administered in the morning and exclude contacts occurring 

after the time of the survey. Contact patterns for asymptomatic participants are included 

in the data since some participant’s symptoms began on the day of or the day before the 

survey. For each day, the respondent provided the number of people she contacted in her 

own compound in the morning and the afternoon/evening. In addition, she indicated yes or 

no to whether she had visited a list of locations: another compound (up to five could be 
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identified in the survey), a market, mosque or church, field, school, sports field or public 

place, outside the study zone, or another location. For each location visited, the village 

identification code (and compound identification number, where applicable), the time of day 

visited (AM, PM, or both), and the number of persons the respondent spoke with during 

the visit were recorded. For additional details, refer to the example survey form in the 

Supplementary Material.

Village of residence was recorded during quarterly censuses conducted by the Niakhar DSS 

(Delaunay et al., 2002, 2013). If participants moved during the trial, their departure date, 

arrival date, and village of their new residence were recorded. Those who moved a second 

time had their departure date (but not residence after second move) recorded as well. The 

cleaning that was performed after receiving the residence data from the DSS is described in 

the Supplementary Material.

3. Analytic Methods

3.1. Causal effect estimation

In this paper, we consider two estimators for the overall effect of influenza vaccination 

relative to polio vaccination. The first estimator assumes partial interference (i.e., no 

contamination), and we refer to it as the no-contamination estimator. The second explicitly 

accounts for interference generated by contacts to villages of the opposite treatment 

assignment; we refer to this as the contamination-adjusted estimator.

To account for contamination, we use the method developed in Carnegie et al. (2016). 

This approach uses an additive hazards model (Aalen, 1989) for the time to first event but 

includes a modified treatment variable to account for contacts occurring between clusters 

in a cluster-randomized trial. Typically, the treatment variable Z is a binary indicator such 

that Z = 1 for participants from treated villages and Z = 0 for those from control villages. 

This is the treatment variable used to calculate the no-contamination estimator. To account 

for interference between clusters, we use an alternate treatment variable M, which is the 

proportion of contacts of residents of the participant’s village that are with treated villages. 

It can be thought of as a village-level intensity of exposure to the treatment conditions, and 

will range from 0 (if all contacts reported in a village are with control villages) to 1 (if all of 

the contacts reported in a village are with treated villages). Note that if no contamination is 

present, then this modified treatment variable reduces to the binary treatment variable used 

to calculate the no-contamination estimator. The additive hazards model used to obtain the 

no-contamination estimator for an individual in cluster j is

λj t Z = β0 t + βZ t zj,

where zj is a binary treatment indicator for cluster j. The contamination-adjusted estimator is 

obtained from the following model for individual in cluster j:

λj t M = β0 t + βM t mj,
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where mj is the total percentage of contacts of susceptibles in cluster j that are with treated 

clusters. Note that mj is a cluster-level variable, but the model is an individual-level model, 

with individuals in the same cluster taking the same value for mj.

The coefficient of interest in the additive hazards model—corresponding to the treatment 

variable—is potentially time-varying. For this reason, we report both that coefficient 

(visually) and the difference in cumulative hazard of influenza due to the treatment. 

Because the cumulative hazard is low, this is approximately equal to the difference in 

cumulative incidence due to treatment. The time-varying coefficients are visualized by 

displaying the value of their integrals, ∫0
T βZ t dt and ∫0

T βM t dt, as a function of time. 

These integrals represent the cumulative hazard difference over the time interval [0,t] 

and are estimated using the nonparametric approach proposed by Aalen (1989). Since 

the nonparametric estimation approach (based on step functions) produces curves that are 

not always differentiable, the additive treatment effect is not explicitly estimated, but it is 

visualized as the slope of the curve (Aalen, 1989). Estimation is implemented with the 

aalen function in the R package timereg to fit the additive hazards models (Scheike and 

Zhang, 2011; R Core Team, 2017), and the R code used is provided in the Supplementary 

Material. The effects are displayed together with confidence intervals based on robust 

(sandwich) standard errors which take into account the statistical dependency arising from 

the clustering; these are also provided by the aalen function.

The estimand of interest, which we will denote β(t), is the population-averaged difference 

in hazard of laboratory-confirmed symptomatic influenza infection associated with a change 

from 0% to 100% exposure to treatment. While βZ t  is a consistent estimator for β(t) in the 

absence of contamination, Carnegie et al. (2016) proved that βM t  is a consistent estimator 

for β(t) in the presence of measured contamination. While the actual hazards experienced 

by different individuals may differ as an epidemic progresses (due to its stochasticity in 

time and space), the estimand of interest is averaged over all individuals and clusters. 

As such, this method does not account for interference localized in time and space (e.g., 

the increased risk a household member has when another member is infected). Rather, 

it accounts for interference arising from the contact between people in clusters of the 

opposite treatment assignments. The common assumption of “partial interference” allows 

interference within but not between clusters. This method applies to situations where that 

assumption is violated by adjusting for the between-cluster interference; it does not adjust 

for within-cluster interference.

This additive hazards model for interference has a natural correspondence to a 

compartmental epidemic model such as an SIR model (Susceptible-Infectious-Recovered; 

see, e.g., Keeling and Rohani (2008)). This relationship results from the assumption of 

the compartmental model that the transmission rate is a product of the contact rate and 

the per-contact transmission probability. We provide further details on this relationship 

in the Supplementary Material. This correspondence supports application of our method 

to influenza, which is frequently modelled with an SIR or SEIR (Susceptible-Exposed-

Infectious-Recovered) model (Coburn et al., 2009). Since the length of the exposure state is 
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irrelevant to modelling disease-free survival, this method gives identical results under SIR 

and SEIR assumptions (Carnegie et al., 2016).

Although the hazards are permitted to be time-varying, the model assumes identical hazards 

for different individuals (with the same attributes) at a given time point. As such, the model 

does not take into account the differences in individual hazards due to different numbers of 

infections among neighbors at that time point. Survival analysis models applied in influenza 

vaccine trials typically make this assumption (Ainslie et al., 2019). We perform a simulation 

study, described in Section 4.1, showing that this estimation approach performs well in 

estimating the overall effectiveness even when the true process is stochastic.

While Cox regression is frequently used for survival analysis, the Cox proportional hazards 

model does not share this natural correspondence to epidemic compartmental models. 

Another advantage that the additive hazards model has over the proportional hazards model 

is collapsibility, which implies that the treatment effect is the causal effect of interest 

whether or not covariates are included in the model. A drawback of the additive instead of 

proportional hazards model is that the estimated hazard, or the lower limit of its confidence 

interval, is not mathematically restricted to be nonnegative. However, we did not observe 

negative hazard estimates or negative lower bounds for the confidence interval in the models 

that we fit.

Analyses were performed separately for Year 1 and Year 2 of the study. Inputs to the 

additive hazards model are the time to event (or censoring) for each person, infection 

status, and the percentage of contacts to treated clusters. Calculation of time-to-event for 

each survey year is described in detail in the Supplementary Material. One irregularity in 

data collection is noteworthy: during Year 2 of the study, household surveillance was not 

performed during a strike of field workers that lasted from Jan 3, 2011 through Feb 18, 

2011. This could introduce bias since the rate of reporting infections during household 

visits (as opposed to health posts) was higher in treated than control villages (87.5% and 

83%, respectively). To prevent such bias, we analyze a shorter time interval for Year 2 by 

censoring observations at the start of the strike. The full Year 2 estimates are included as a 

secondary analysis.

3.2 Calculation of treatment exposure estimates

The treatment exposure value for village j, denoted mj, is the proportion of contacts that 

susceptible people in village j made with people in treated clusters. For control villages, this 

variable is the percentage of contacts to treated villages (the contamination estimate itself). 

For treated villages, however, the treatment exposure value is one minus the percentage of 

contacts to people in control villages (i.e., one minus the contamination estimate).

We analyze a single contact survey per participant and restricted analysis to 3,758 contact 

surveys that were submitted between August 1, 2009 to February 1, 2010 because this subset 

had been previously cleaned and analyzed extensively (Potter et al., 2019). Contact surveys 

were not excluded for those with negative influenza tests. The contact survey was given to a 

convenience sample: rather than randomly sampling susceptible people, those who reported 

influenza-like-illness during weekly surveillance visits or at the health post were surveyed 
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regarding contact patterns. By estimating proportions of contacts to treated clusters in this 

group, we are assuming that the contact patterns reported by these respondents are similar to 

those of susceptible people. We analyze only data collected in the morning two days before 

the survey date. We chose this reporting day because it this time point includes more reports 

from asymptomatic people. A total of 924 (24.6%) were asymptomatic two days before the 

survey while only 51 (1.4%) were asymptomatic on the day of the survey. Additionally, a 

social network analysis of these data found no difference in numbers of contacts recorded 

the day before the survey vs. two days prior – so there is no evidence that the earlier time 

point is subject to recall bias (Potter et al., 2019). The survey did not elicit how many of 

the morning contacts were repeated in the afternoon/evening. We analyze contacts reported 

in the morning as treatment exposure rates were similar between morning and afternoon 

contacts (Supplementary Material Table 1). As noted above, the treatment exposure value for 

village j is denoted mj, and we will denote our estimator for it by mj. The formulas given 

below for mj are expressed in terms of our survey respondents, but also apply to samples that 

are taken of susceptible people or are representative of the population of susceptible people.

Our treatment exposure estimates take into account the percentage of contacts reported while 

the respondent was visiting treated villages (Section 3.2.1) and the percentage of contacts 

reported in the respondent’s own home (compound) that occurred to visitors from treated 

villages (Section 3.2.2).

3.2.1. Percentage of contacts in treated villages—For each village, we calculate 

the percentage of contacts reported while respondents from that village were located in 

treated villages. The denominator is the sum of contacts reported by village residents; 

the numerator is the sum of those contacts whose reported location was a treated village. 

Contacts reported to villages that are not in the trial are included in the denominator and are 

treated the same as contacts to control villages. The numerator includes contacts reported 

in the respondent’s own compound if the respondent was a resident of a treated village. 

For participants who moved mid-study, the village of residence is the reported village of 

residence at the time of the contact survey.

We initially calculated treatment exposure rates using reports by asymptomatic people 

only, assuming that this would be more representative of behavior when uninfected and 

that the symptomatic people would travel less. We compared these to the estimates based 

on reports by symptomatic people and (counterintuitively) found that symptomatic reports 

included slightly higher rates of contacts to clusters of the opposite treatment assignment 

(Supplementary Material Tables 2 and 3). This is likely because cross-cluster contact rates 

are fairly low overall and because less data is available for asymptomatic reports, so the 

small amount of data from asymptomatic respondents includes fewer non-zero counts. 

Therefore we combined data from both asymptomatic and symptomatic people to estimate 

the treatment exposure variable more precisely.

3.2.2. Incorporating treatment exposure from visitors to the respondent’s 
compound—The above approach assumes that the location of a contact reported by the 

respondent indicates the residence of the person contacted. As such it does not account 
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for visitors to one’s compound from a cluster of the opposite treatment assignment, so 

may underestimate cross-cluster exposure. To incorporate exposure from visitors into the 

estimate, we will define some notation and first consider the estimates for people living 

in control clusters. Suppose there are nj people living in cluster j, and let Di denote the 

number of contacts reported by person i who lives in cluster j. Let Ti denote the number of 

contacts person i has made in a location in a treated cluster. Our estimate for the proportion 

of contacts in cluster j that susceptibles made to people from treated clusters is

mj =
∑i = 1

nj Ti

∑i = 1
nj Di

We need to update the numerator to include contacts occurring within the respondent’s own 

compound to visitors from other clusters. We can use estimates reported by these visitors, 

rather than by respondents in cluster j, to obtain this information. Let VT,j denote the total 

number of contacts reported by people in any treated cluster during their visits to compounds 

in cluster j. While these contacts contribute to the denominator in the above estimator, 

they do not contribute to the numerator (because they occurred within the respondent’s 

assigned cluster), but should. Therefore, when j is a control cluster, our updated estimate 

incorporating this exposure is:

mj =
∑i = 1

nj Ti + V T, j

∑i = 1
nj Di

=
∑i = 1

nj Ti

∑i = 1
nj Di

+
V T, j

∑i = 1
nj Di

The rationale for this adjustment is explained in detail in Potter et al. (2019), and an 

explanation tailored to this setting is provided in the Supplementary Material.

An analogous update is needed for residents of treated clusters. For these respondents 

we need to account for visits from members of control clusters. Letting VC,j denote the 

total number of contacts reported by people in any control cluster during their visits to 

compounds in cluster j. When j is a treated cluster, our updated estimate incorporating this 

exposure is:

mj =
∑i = 1

nj Ti − V C, j

∑i = 1
nj Di

=
∑i = 1

nj Ti

∑i = 1
nj Di

−
V C, j

∑i = 1
nj Di

3.3. Multiple Imputation for Missing Contact Data

The submitted contact surveys had a large number of missing fields, which, if not modelled 

appropriately, could create bias in the estimates of cross-cluster exposure. For locations 

visited outside the home two days before the survey, 24% are missing time of day, 59% are 

missing the number of people contacted, and 32% do not have a village number recorded. 

Missing data was slightly less on the day before the survey (55% missing the number of 
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people contacted and 29% missing the village number), but contamination estimates were 

similar, generally ranging from 0–3% per village. We used data from two days before due to 

the higher number of reports from asymptomatic people at that time point (24.6% vs. 1.4%). 

The survey design elicited at-home contacts differently than those that occurred outside the 

home: the numbers contacted at home in the morning and in the afternoon/evening were 

recorded, so village and time point were not collected as separate variables. Furthermore, in 

60% of analyzed surveys, the number contacted at home in the morning was missing.

We used multiple imputation, expanding on the procedure used in another analysis of this 

data set (Potter et al., 2019) to adjust for missing contact data. For outside-home locations, 

up to four variables may be missing: the response to “Was this location visited?”, the time of 

day (AM or PM) the location was visited, the number of people contacted at that location, 

and the village where the location is located. The responses to whether the location was 

visited were imputed based on a log binomial regression model with location type, symptom 

status, and age category as predictors, stratified on day relative to the survey day. Missing 

times were imputed by sampling from the distribution of non-missing times for that location 

type. To impute missing numbers of contacts for non-home locations, we fit a negative 

binomial distribution to the reported contact numbers, predicting the number contacted by 

the location, symptom status, time of day, and age category. For at-home contacts, we 

predicted number contacted based on symptom status, time of day, day relative to survey 

day, age category, and gender. Missing villages for out-of-home contacts were sampled 

from the observed distribution of visited villages for the respondent’s village of residence, 

combining data from both survey days. As such we are assuming the data are missing at 

random; in other words, the predictors in our imputation model are sufficient to explain the 

distribution of unobserved values (Rubin, 1976).

We created twenty imputed data sets, calculated percentages of contacts to treated clusters 

for each village in each of these imputed data sets, and combined the percentages using 

standard rules for combining multiply imputed data (Rubin, 1987).

4. Results

Table 1 displays the treatment exposure estimates for each village enrolled in the trial 

based on the multiply imputed data. For each village, we display the percentage of contacts 

reported when the respondent visited treated villages, the estimated percentages of contacts 

from visitors from villages of the opposite treatment assignment, as well as the overall 

percent of contacts to treated villages, which was used as a covariate in the contamination-

adjusted model. The overall percentages are generally close to zero for control villages and 

close to 100 for treated villages, with a few exceptions.

Our estimated time-varying treatment effects (both unadjusted and contamination-adjusted) 

are displayed in Figure 2, Panel A for Year 1 of the study. Since the graph displays the 

integral of the time-varying coefficients, the slopes of the curves represent the coefficients 

themselves - the estimated difference in hazard rates between vaccine and control villages 

at each point in time. Both models indicate that the influenza vaccination program reduces 

influenza through September. Then it is estimated to be ineffective until February (since no 
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influenza was circulating), after which the program is associated with an increase in the 

hazard of influenza for a month. This latter time period coincides with the appearance of the 

A (H1N1) (2009) pandemic strain of influenza (A/H1N1pdm09) in the community, which 

first appeared in late January 2010. Panel B of Figure 2 displays numbers of infections 

by influenza type and week. Panel C presents the two estimators excluding cases of A/

H1N1pdm09 influenza from the analysis. Its slope represents the instantaneous effect of the 

influenza vaccination program on the hazard of infection for non-pandemic strains only.

Figure 3 presents results for the second year of the study. As mentioned previously, the 

formulation of the vaccine provided during this year included the A/H1N1pdm09 strain, 

unlike the formulation provided in Year 1. Panel B of the graph shows that substantially 

fewer infections were detected this year. We expect reports to be lower during the strike 

(Jan. 1 - Feb. 18, 2011) since household surveillance was not conducted during that time, 

but frequencies prior to the strike were also much lower than in Year 1. Figure 3 shows that 

after a delay of approximately two months with little effect, the two estimators both indicate 

that influenza vaccination reduced incidence in Year 2. The delay is likely due to the relative 

sparsity of cases in the first weeks of the year. The start of the strike mentioned in Section 3 

is shown as a vertical line.

Table 3 displays the estimated difference in cumulative hazard of lab-confirmed 

symptomatic influenza infection due to the influenza vaccination program. These are simply 

the values of the curves in Figures 2 and 3 for the last day of follow-up, and the confidence 

intervals correspond to those in the figures. Because the cumulative hazard is low, the 

difference in cumulative hazard is approximately equal to the difference in cumulative 

incidence due to treatment.

The overall incidence rates are displayed in Table 2 for comparison purposes. Since the 

overall incidence in the control group was 6.13%, our estimated additive effect of −0.68% 

indicates the vaccination program prevented about 11% of influenza infections.

Our two estimators and confidence intervals are similar, but the no-contamination estimators 

are slightly attenuated because they assume no mixing between clusters of opposite 

treatment assignments. The confidence intervals for the contamination-adjusted estimator 

are slightly wider, reflecting the loss of information caused by contamination, but again, 

are similar. For Year 1 both effects are not statistically significant when all infections are 

included but achieve significance (barely) when A/H1N1pdm09 infections are excluded. 

The Year 2 estimates are statistically significant. The Year 2 estimates are interpreted 

differently as they cover different time intervals; a higher difference in cumulative incidence 

is expected for the longer interval if vaccine performance stays the same. While bias from 

the strike starting Jan 1, 2011 does not impact the Year 2 estimate censored at that date, the 

uncensored one could be biased. The rates of reporting infections during health post visits 

(as opposed to household visits) were 12.5% in treated villages and 17% in control villages, 

so the vaccine effect could be overestimated by including a time interval with only health 

post visits. Because the rates are similar, and because the strike lasted 49 days of a 320-day 

follow-up period, the bias is likely low.
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4.1. Simulation study

We also perform a simulation study to demonstrate the potential impact of using the 

contamination-adjusted estimator in settings with higher rates of contamination across 

communities. The simulation study is similar to the one conducted in Carnegie et al. (2016), 

with some adaptations to reflect the influenza setting of interest in this paper. We simulate 

interacting pairs of clusters with the percentage of contacts of members of the treated 

cluster that are with the untreated cluster fixed at values ranging from 5 to 30 percent. Each 

simulation has ten pairs of clusters, for a total of 20. Influenza spreads over the network 

following a stochastic SEIR model parameterized based on the model described in Chao et 

al. (2010), with infected individuals spending an average of 2 days in the exposed phase 

and 5 in the infectious phase, and average infectiousness per face-to-face contact calculated 

to produce an R0 of 2.4 in an unvaccinated population. Each village in each simulation has 

a small random pertubation added to the infectiousness parameter to encourage stochastic 

variation across clusters and simulations. Individuals have an average of 16.5 face-to-face 

contacts per day because a previous analysis of the network data collected in this study 

found a lower bound of 16.5 face-to-face contacts per day for asymptomatic individuals 

and 15 for symptomatic individuals (Potter et al., 2019). For simplicity, we assume that all 

individuals in treated clusters were vaccinated and that vaccination reduces infectiousness by 

50%. Although this set-up is simpler than our trial’s design (which includes both vaccinated 

and unvaccinated individuals in treated clusters), and simplifies the vaccination effect (which 

typically also impacts susceptibility), it is a straightforward way to induce a reduction in 

cumulative incidence and demonstrate the properties of this method.

The outcome measure is the cumulative incidence of influenza after 60 days. The 

contamination-adjusted estimator attempts to recover the difference in cumulative incidence 

that would be observed between the two arms of the study if there were truly no 

contamination across clusters. The “true value” for this estimand is found via simulation, 

based on 2000 replications of the epidemic process in a population with two fully distinct 

clusters. This gave a reduction in cumulative incidence of 8.3 percentage points in the 

treated cluster relative to the control. For simulations with interacting clusters, we perform 

250 replications of the epidemic process and compute both the contamination-adjusted 

estimator and the no-contamination estimator (which wrongly assumes there was no 

contamination between clusters).

The simulation study results in Figure 4 show that the no-contamination estimator is 

steadily more attenuated relative to the difference in cumulative incidence as the rate of 

contamination increases. The contamination-adjusted estimator, on the other hand, recovers 

the true difference in cumulative incidence in the absence of contamination well, though that 

estimate becomes increasingly variable as the rate of contamination increases. In Panel B of 

the figure, we see that the root mean squared error (RMSE) of the contamination-adjusted 

estimator is still consistently lower than observed for the no-contamination estimator, 

indicating that the bias reduction outweighs the increased variability when assessing 

accuracy of the estimate.

Potter et al. Page 12

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Discussion

We have applied novel statistical methodology to estimate the overall effect of a trivalent 

influenza vaccine program in Niakhar, Senegal. This method incorporates social contact data 

together with treatment and infection data to reduce the bias in this estimate caused by 

interference between clusters. Ours is the first study we know of applying this novel method 

to contact and infection data collected jointly in a clinical trial setting. We produce the first 

estimates of contact rates between clusters of opposite treatment assignments for this trial 

and the first, to our knowledge, in Senegal. Our results provide insight into the extent to 

which the standard assumption of partial interference is violated in a trial of this structure 

and of the impact of this violation on estimates.

Our time-varying effect estimates show that in Year 1 of the study, the treatment program 

– vaccination of children – reduced lab-confirmed symptomatic infection with seasonal 

influenza in the community. Our estimates found the treatment program to be associated 

with a small (though statistically insignificant) increase in infections with A/H1N1pdm09 

influenza. While other studies have found evidence for this relationship (Cowling et 

al., 2010; Skowronski et al., 2010), others have found evidence that trivalent influenza 

vaccination protects against A/H1N1pdm09 infection. A meta-analysis of 17 studies, 

including the two just mentioned, found that the overall evidence points to a protective 

effect, but the authors cautioned against drawing a solid conclusion because most of the 

studies reviewed were observational (Yin et al., 2012). Two subsequent randomized trials 

also found evidence for a protective effect (Cowling et al., 2012; Mcbride et al., 2016).

The extent of contamination measured in our data resulted in little difference between the 

cumulative incidence for the estimator adjusting for contamination and the one assuming 

no contamination. The latter was smaller because, as has been found in other studies, 

contacts to members of clusters of the opposite assignment attenuate the estimate of the 

overall effect from what it would have been with no contamination (Carnegie et al., 2016; 

Tiono et al., 2013; Wang et al., 2014). The model we implement explicitly adjusts for 

contamination, correcting this under-estimation. In addition, the standard errors associated 

with this adjusted estimator were larger than those for the no-contamination estimator 

because information available to estimate the effect of the treatment program decreases as 

mixing increases – so these intervals accurately reflect the decrease in information from zero 

mixing to the small level of mixing we observed. Our simulation study shows a stronger 

difference between the two methods when contamination is higher. For example, when 

the true difference in cumulative incidence is 8.3 percentage points, if contamination is 

15%, the contamination-adjusted estimator removes about four percentage points of bias 

caused by assuming no contamination. The impact on bias and variance is illustrated by our 

simulation study, which shows the expected attentuation of the effect estimate for values of 

contamination ranging from zero to 35%. As noted in Carnegie et al. (2016), the approach 

we have used to estimate the overall effect fails when 50% of contacts occur to clusters 

of the opposite treatment assignment. This is because our method uses the contact rates 

between clusters to differentiate treatment status, so no information distinguishing clusters is 

available for our approach when mixing is at 50%.
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The level of contamination in the data was fairly small: the percent of contacts to clusters 

of the opposite treatment was between 0% and 3% for most villages, although there were 

some outliers, with 14% being the largest observed value. To our knowledge, these are 

the first data-based contamination estimates of this type for Senegal. Our finding that this 

amount of contamination has a negligible impact on the effect estimate may be encouraging 

for researchers who carefully define cluster selection to minimize contamination, as was 

done in this study. As contact and travel patterns can vary substantially between cultures 

and contexts, our estimates may not generalize to other geographic areas, so further 

measurement of contamination is recommended. Figure 1 shows little separation between 

the villages in this trial, but they were separated by physical boundaries such as bodies of 

water and roads, and their definition as cultural/political entities also has an impact on social 

contact behavior.

Our study has several limitations. First, convenience sampling was used in collecting contact 

and travel data. Instead of random sampling, participants with ILI were surveyed during 

household surveillance visits, and their responses were used to estimate the percentage of 

contacts that susceptible individuals made to treated clusters. Information on contact patterns 

prior to symptom onset suggest that contact patterns while symptomatic vs. asymptomatic 

do not differ substantially. However, in future surveys, random sampling of susceptible 

individuals is recommended to ensure a representative sample.

Second, the extent of missing data in the contact survey is substantial. As noted previously, 

for locations visited outside the home two days before the survey, 24% are missing time 

of day, 59% are missing the number of people contacted, and 32% do not have a village 

number recorded. We used multiple imputation to adjust for missing data. Simulations have 

shown that multiple imputation can yield unbiased results even when the proportion of 

missing data is as high as 90%, as long as the imputation model is correctly specified and 

the data are Missing At Random (MAR) (Madley-Dowd et al., 2019). However, bias is 

still a risk if these conditions do not hold. For example, if numbers of people contacted 

in villages of the opposite assignment were higher for participants who did not respond 

to this question than for those who responded (and who have similar values for covariates 

included the multiple imputation model), then the true contamination values may be higher 

than our predicted values. This would mean that the magnitude of the true overall effect is 

larger than our estimate. If, on the other hand, we have overestimated contamination, then 

the true effect may be closer to our no-contamination estimate (closer to −0.65 than −0.68). 

Implementation of similar surveys in the future may be improved by a diary-based approach, 

in which participants fill out a paper diary as they go about their day (Mossong et al., 2008; 

Béraud et al., 2015; Melegaro et al., 2017; Johnstone-Robertson et al., 2011; Horby et al., 

2011; Fu et al., 2012; Read et al., 2014). In addition we would recommend consideration 

of procedures employed by Kiti et al. (2014), including conducting a pilot study, providing 

wristwatches with pre-programmed alarms to remind participants to fill out their diary, and 

by assigning “shadow” respondents to fill out the diary for illiterate participants. Alternately 

and potentially more accurate would be an approach using remote wireless sensors to detect 

when two participants are located within 1.5 meters of each other - a distance at which 

infection may be transmitted (Kiti et al., 2016; Fournet and Barrat, 2014; Barclay et al., 

2014; Génois et al., 2015). While the latter may be prohibitively expensive at the scale of 
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this study, it could be employed for studies with smaller sized clusters (e.g. households or 

compounds).

A second limitation of the contact survey is that contacts were reported separately for 

morning and afternoon time intervals without recording the extent of overlap. Because 

morning and afternoon contamination estimates were similar, either is likely a reasonable 

approximation to the percent of contacts to clusters of the opposite assignment during a 

full day. However, it would be preferable to record numbers of contacts throughout the 

entire day in future studies. We also note that contacts recorded on the day of the survey 

did not contribute to analysis since truncation bias arose from the fact that most surveys 

were conducted in the morning. A diary-based approach would avoid this problem, or if 

interviews are conducted, they should focus on days before the survey day. The literacy 

level of the population of interest should be considered in choosing the optimal approach to 

collect contact data.

Finally, the type of contacts recorded in our study emphasize transmission via large droplets 

(in close proximity) rather than by aerosol droplets which have a longer range. While 

many studies have investigated the importance of fomite transmission, physical contacts, 

small droplets, and aerosol droplets for transmission, their relative importance is not well 

understood (Weber and Stilianakis, 2008; Cowling et al., 2013; Teunis et al., 2010; Wei and 

Li, 2016; Kutter et al., 2018). Although the contact survey had limitations, it seems unlikely 

that the true contamination levels are higher enough than our estimated ones to substantially 

impact the efficacy estimates. Therefore we believe that our conclusion that contamination 

was low and had only a small impact on efficacy estimates is valid. However, careful design 

of the contact survey would improve data precision if a similar approach is applied when 

clusters are smaller and closer. We would recommend such studies as future research. For 

example, a compound-based randomization scheme had been considered for this trial design 

instead of village-based, and in fact, the protocol allowed for both possibilities. The level 

of contamination for such a design, which would likely be higher than that for villages, 

could be estimated with our social network data in order to understand its potential impact 

on estimation. Although our method adjusts for the contamination, higher contamination 

decreases the information available to detect an effect. Since our approach removes the 

dilution from the effect estimate while simultaneously increasing standard errors, the lost 

power from contamination is not regained via our adjustment. Rather, the estimate and 

standard error estimates are both more accurate than unadjusted estimates. We expect this 

relationship to hold for other adjustment approaches which have been proposed but, to our 

knowledge, not yet applied or tested (e.g., Reiner Jr. et al. (2016)).

We also recommend collection and estimation of cross-cluster contamination for different 

types of contacts (e.g., physical contacts, sexual contacts), for various definitions of clusters 

in various settings. These estimates can be used to inform future trial designs, choose 

whether the method we have applied would be better than one which does not adjust for 

contamination, and ultimately improve the accuracy of vaccine effectiveness and standard 

error estimates.
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Fig. 1. 
Map of the twenty villages included as clusters in the influenza vaccine trial.
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Fig. 2. 
Panel A shows the estimated effects of the influenza vaccination program for Year 1 (July 

2009 - May 2010) of the study. Shading shows 95% confidence intervals. Panel B shows 

incidence of influenza infections by time and type. Panel C shows the estimated effects of 

the influenza vaccination program during Year 1 on symptomatic infection with seasonal 

influenza strains (A/H3N2 or B).
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Fig. 3. 
Panel A shows the estimated effects of the influenza vaccination program for Year 2 (July 

2010 - May 2011) of the study. Panel B shows incidence of influenza infections by time and 

type.
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Fig. 4. 
Panel A shows the value of the contamination-adjusted (red solid line) and no-contamination 

(blue dashed line) estimators and associated 95% confidence intervals across values of 

cross-community contamination. The horizontal line shows the true value of the estimand. 

Because of the substantial overlap in confidence intervals, the lines are shifted slightly 

for visibility, but contamination rates were at 5% intervals. Panel B shows the root mean 

squared error of the estimator (with respect to the true difference in cumulative incidence in 

the absence of contamination of −0.083).
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Table 1:

Percentages of contacts with residents of treated clusters based on (1) contacts reported while located in 

treated clusters, (2) contacts in the respondent’s own compound to visitors from clusters of the opposite 

treatment assignment, and (3) total percentages of contacts to residents of treated clusters (treatment 

exposure).

Village Treatment 
Assignment

Percent reported in treated 

clusters ∑i = 1
nj Ti/∑i = 1

nj Di

Percent from visitors 

V C, j/∑i = 1
nj Di

Treatment exposure 
mj

Kalome Ndofane Vaccine 100 0 100

Ngayokheme Vaccine 99 0 99

Ndokh Vaccine 99 1 99

Ngangarlame Vaccine 99 0 99

Diohine Vaccine 99 0 98

Mokane Ngouye Vaccine 99 1 98

Nghonine Vaccine 98 2 96

Logdir Vaccine 95 2 93

Darou Vaccine 96 5 90

Poudaye Vaccine 93 2 90

Ngalagne Kop Control 0 0 0

Mboyene Control 0 0 0

Poultok Diohine Control 0 0 0

Bary Ndondol Control 0 1 1

Toucar Control 1 0 1

Gadiak Control 2 0 2

Godel Control 2 0 2

Khassous Control 3 0 3

Kothiok Control 3 0 3

Meme Control 14 0 14

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2023 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Potter et al. Page 25

Table 2:

Incidence of influenza by treatment group and study year.

Study Year Treated Control All

Year 1, all infections 999/18200 (5.49%) 1076/17550 (6.13%) 2075/35750 (5.8%)

Year 1, excluding A/H1N1pdm09 630/18200 (3.46%) 833/17550 (4.75%) 1463/35750 (4.09%)

Year 2, all infections 224/18547 (1.21%) 341/17815 (1.91%) 565/36362 (1.55%)
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Table 3:

Estimated difference in cumulative incidence of influenza (measured in percentage points) due to the influenza 

vaccination program.

Contamination-Adjusted No-Contamination

Study Year Estimate 95% C.I. Estimate 95% C.I.

Year 1, all infections −0.68 [−2.53, 1.18] −0.65 [−2.40, 1.09]

Year 1, excluding A/H1N1pdm09 −1.45 [−2.81, −0.08] −1.35 [−2.64, −0.06]

Year 2 (July - Dec 2010) −0.59 [−1.01, −0.17] −0.59 [−0.99, −0.19]

Year 2 (July 2010 - May 2011) −0.73 [−1.16, −0.31] −0.73 [−1.14, −0.32]
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